• Video
  • 08-Nov-2011 05:00 EST

Beyond MPG: Characterizing and Conveying the Efficiency of Advanced Plug-In Vehicles 

00:34:33
Length:

Purchase Required to View Video

Short Preview Below

Research in plug in vehicles (PHEV and BEV) has of course been ongoing for decades, however now that these vehicles are finally being produced for a mass market an intense focus over the last few years has been given to proper evaluation techniques and standard information to effectively convey efficiency information to potential consumers. The first challenge is the development of suitable test procedures. Thanks to many contributions from SAE members, these test procedures have been developed for PHEVs (SAE J1711 now available) and are under development for BEVs (SAE J1634 available later this year). A bigger challenge, however, is taking the outputs of these test results and dealing with the issue of off-board electrical energy consumption in the context of decades-long consumer understanding of MPG as the chief figure of merit for vehicle efficiency. For PHEVs, electricity displaces fuel usage, and this is highly sensitive to many factors such as driving style and distance traveled between recharge. For BEVs, the simple dilemma is: how do we describe ?miles per gallon? when there are, in fact, no gallons?! Opinions are highly varied and currently there is little consensus over very these very important issues which could have the power to make or break the plug-in vehicle market before a single vehicle is delivered to the car dealers. This talk will address the issues, and of course provide an opinion based upon an engineer?s 17 years of experience laboratory testing HEVs, PHEVs, and BEVs.

Presenter
Michael Duoba, Argonne National Laboratory

Buy
Select
Price
List
Purchase to View
$19.00
Share
HTML for Linking to Page
Page URL
Grade
Rate It
No ratings yet

View More Video

Video
2012-03-29
Wireless power transfer (WPT) of plug-in and battery electric vehicles (PEV�s) rely on loosely coupled transformer operating in magnetic resonance to tune out reactive effects. Depending on the degree of coupling, such systems experience a single peak response that trends to bifurcate as the coefficient of coupling increases. This places additional burden on the WPT grid side power controller to not only manage the power transfer process but to manage the transmit coil to receiver coil reactive power in response to vehicle ground clearance and misalignment tolerance. In addition, the WPT rectified output voltage must dynamically match the vehicle on-board regenerative energy storage system (RESS). This paper examines the essentials of WPT operation and challenges facing the commercialization of wireless charging. Experimental results obtained from the Oak Ridge National Laboratory WPT apparatus are presented as validation of the theory. Presenter John Miller, ORNL
Video
2012-03-27
Presentation will concentrate on a brief overview of SAE International including history, international focus and SAE electro-mobility ground vehicle standards development activities. The new era of mobility and the driving forces behind it including converging technologies and today�s drive toward �green� will be discussed. Also, standards and technology enablers for vehicle electrification including, the global landscape for EV charging standards and next generation charging method approaches will be reviewed. Additionally, an overview of SAE global EV Battery Standards and activities including industry/government collaborative efforts to develop lithium ion rechargeable energy storage system safety standards will be provided. Presenter Keith Wilson, SAE International
Video
2012-02-01
Plug In Charging Systems are mainly responsible for transferring energy from the electric power grid into one or more vehicle energy storage devices (e.g. batteries). A satisfactorily operating Plug in Charging System has the following three key performance characteristics. First, the charge process starts up easily. Second, it completes the charge process within some expected time. Third, it charges efficiently so that excessive amounts of power are not wasted. When a Plug In Charging System malfunction exists and negatively affects one or more of these key performance criteria, it is the responsibility of the OBD monitoring system to identify the fault and notify the customer. The presentation will discuss the key performance characteristics described above and some of the diagnostic strategies used to detect faults. The discussion will also include an overview of MIL illumination and freeze frame storage capabilities.
Video
2016-04-12
In “EV Charging and the Vehicle-to-Grid Potential” (10:29), engineers from NextEnergy show how users can take advantage of electric vehicles not only as green transportation, but also as power suppliers. The case study of a bi-directional vehicle-to-home charging project is presented in detail. Qualcomm’s Halo technology for wireless EV charging is also demonstrated in this episode. This episode highlights: NextHome, an experiment that makes bi-directional charging a reality How to integrate energy systems to manage energy flows from the car, the house and the grid How to manage the way we can purchase energy for different purposes when prices are the most affordable Also Available in DVD Format To subscribe to a full-season of Spotlight on Design, please contact SAE Corporate Sales: CustomerSales@sae.org or 1-888-875-3976.

Related Items

Training / Education
2017-11-14
Standard
2015-10-28