• Video
  • 04-Nov-2011 03:11 EDT

What If We Let Consumers Design PHEVs?

00:29:26
Length:

Purchase Required to View Video

Short Preview Below

Consumers design different PHEVs than expert analysts assume. Experts almost uniformly assume PHEVs that offer true all-electric driving for 10 to 60 miles; consumers are more likely to design PHEVs that do not offer true all-electric driving and have short ranges over which they use grid-electricity. Thus consumers? PHEV designs are less expensive. These consumer PHEV designs do, or don?t, produce lower GHG emissions than experts? PHEVs over the next ten years. The devil is in the details, i.e., which powerplant emissions to assign to new electricity demand: marginal or average. If (based on marginal powerplant emissions) it makes almost no difference whether we sell consumer-designed or expert-assumed PHEVs over the next ten years, yet as the grid continues to de-carbonize all-electric PHEV designs emerge as clearly the better option, there is a trajectory we could be on from blended, ?short range? PHEVs to all-electric ?long range? PHEVs. We see evidence that such a trajectory is possible by comparing the PHEV designs of consumers who have not and have driven a PHEV. Such consumer insights would materially affect policy and standards design. For example, SAE J2841 favors longer charge-depleting (CD) range to increase utility factors, but consideration of distributions of consumer designs indicates that so many more consumers favor shorter CD range that collectively they would drive more CD miles than those few consumers who favor longer CD range. In addition to informing such technical standards, consumers provide us with insights into the messages, education, and social narratives that would support their transition to PHEVs?and by extension, to other plug-in vehicles.

Presenter
Kenneth Kurani, Univ. of California-Davis

Buy
Select
Price
List
Purchase to View
$19.00
Share
HTML for Linking to Page
Page URL
Grade
Rate It
No ratings yet

View More Video

Video
2012-02-17
This session covers topics regarding new CI and SI engines and components. This includes analytical, experimental, and computational studies covering hardware development as well as design and analysis techniques. Presenter Sung Hoon Lee, Hyundai Motor Co.
Video
2012-01-24
Some the OBD-II regulations have been around for a long time or seem to be intuitively obvious. It is easy to assume to assume that everyone knows how to implement them correctly, that is, until someone actually reads the words and tries to do it. Most often, these issues come up when modifying existing OBD features, not when creating completely new ones. This presentation contains a few examples of features that should have been easy to implement, but turned out not to be easy or simple. Presenter Paul Algis Baltusis, Ford Motor Co.
Video
2011-11-17
The presentation describes the aerodynamic development and optimization process of the three different new models of the Audi A6/A7 family. The body types of these three models represent the three classic aerodynamic body types squareback, notchback and fastback. A short introduction of the flow structures of these different body types is given and their effect on the vehicle aerodynamic is described. In order to achieve good aerodynamic performance, the integration into the development process of the knowledge about these flow phenomena and the breakdown of the aerodynamic resistance into its components friction- and pressure drag as well as the induced drag is very important. The presentation illustrates how this is realized within the aerodynamic development process at Audi. It describes how the results of CFD simulations are combined with wind tunnel measurements and how the information about the different flow phenomena were used to achieve an aerodynamic improvement.
Video
2013-04-09
A debrief video of our 2012 "season".

Related Items

Article
2016-09-06
Article
2016-08-24