• Video
  • 16-Feb-2012 01:15 EST

New Particulate Matter Sensor for On Board Diagnosis

00:15:57
Length:

Purchase Required to View Video

Short Preview Below

The presentation describes technology developments and the integration of these technologies into new emission control systems. As in other years, the reader will find a wide range of topics from various parts of the world. This is reflective of the worldwide scope and effort to reduce diesel exhaust emissions. Topics include the integration of various diesel particulate matter (PM) and Nitrogen Oxide (NOx) technologies as well as sensors and other emissions related developments.

Presenter
Atsuo Kondo, NGK Insulators, Ltd.

Buy
Select
Price
List
Purchase to View
$19.00
Learn More
Technical Paper / Journal Article
2011-04-12
TECH PPR 2011 CONG SP-2318
Share
HTML for Linking to Page
Page URL
Grade
Rate It
No ratings yet

View More Video

Video
2012-02-16
This session focuses on particle emissions from combustion engines, including measurement methods and fuel effects. Presenter Leonidas D. Ntziachristos, Aristotle University Thessaloniki
Video
2012-02-01
Update on heavy-duty regulations. Presenter Michael J. McCarthy, California Air Resources Board
Video
2011-12-05
These advanced checks have resulted in development of many new diagnostic monitors, of varying types, and a whole new internal software infrastructure to handle tracking, reporting, and self-verification of OBD related items. Due to this amplified complexity and the consequences surrounding a shortfall in meeting regulatory requirements, efficient and thorough validation of the OBD system in the powertrain control software is critical. Hardware-in-the-Loop (HIL) simulation provides the environment in which the needed efficiency and thoroughness for validating the OBD system can be achieved. A HIL simulation environment consisting of engine, aftertreatment, and basic vehicle models can be employed, providing the ability for software developers, calibration engineers, OBD experts, and test engineers to examine and validate both facets of OBD software: diagnostic monitors and diagnostic infrastructure (i.e., fault memory management).
Video
2012-02-01
Hybrid technology has the potential to enable dramatic reductions in greenhouse gases (GHG), such as the California goal of reducing GHG by 80 percent from 1990 levels by 2050. As a result it is expected that hybrid systems will occupy a growing proportion of the market. However, introducing a hybrid system in a vehicle may adversely affect the performance of the engine OBD system in monitoring malfunctions impacting pollutant emissions. For example, a hybrid system that reduces time of the engine in idle or deceleration overrun conditions could make a well-performing engine OBD system noncompliant, by reducing in-use frequency of some OBD monitors below acceptable levels. In this presentation, Ricardo will present a process for evaluating the impact that a hybrid system which has been optimised to minimise GHG emission over a specified drive-cycle will have on the effectiveness of engine OBD monitors.

Related Items

Training / Education
2017-04-03
Technical Paper / Journal Article
2003-05-19