• Video
  • 13-Mar-2012 05:16 EDT

A New Policy for COTS Selection: Overcome the DSM Reliability Challenge

00:29:53
Length:

Purchase Required to View Video

Short Preview Below

Up to now, the reliability achieved by COTS components was largely sufficient for avionics, in terms of failure rate as well as time to failure. With the implementation of new and more integrated technologies (90 nm node, 65 nm and below), the question has arisen of the impact of the new technologies on reliability. It has been stated that the lifetime of these new technologies might decrease. The drift is expected to be technology dependent: integration, technology node, materials, elementary structure choices and process pay a key role. Figures have been published, which gives smaller lifetime than the 30 years generally required for avionics. This would of course impact not only the reliability, but also the maintenance of COTS-based avionics. Hence a new policy should be defined for the whole COTS supply chain. Faced with these impending risks, different methodologies have been developed. As far as EADS is concerned, we launched a study based on a Physics-of-Failure approach to assess the risks linked to the use of these technologies. Reliability may only be assessed if the end-user describes his mission profile, in which the COTS will be deployed. This is not enough: the COTS technology should be known in detail to choose the relevant parameters for the degradation models of the failure mechanisms, which are both possible and relevant in this usage environment. This paper presents the methodology with relevant simulation and experiments, supported by an application case.

Presenter
Florian Moliere

Buy
Select
Price
List
Purchase to View
$19.00
Learn More
Technical Paper / Journal Article
2011-10-18
TECH PPR 2011 AEROTECH
Share
HTML for Linking to Page
Page URL
Grade
Rate It
No ratings yet

View More Video

Video
2012-03-14
This presentation provides a overview of validating Time Triggered Ethernet (TTE) for use as the network to interconnect the avionics for manned Space Vehicle. The next manned Space Vehicle will use Time Triggered-Gigabit Ethernet (TT-GbE) leveraged from commercial development of TTE critical Intellectual Property. There are several validation considerations of either separating TTE segments or adding new TTE segments onto the network caused by the different phases of a manned space vehicle from pre-launch to re-entry. Considerable amount of validation testing has been successfully performed on TT-GbE/TTE. Presenter Victor Revelle, Honeywell International Inc.
Video
2012-03-19
Use of airborne high resolution digital sensor imagery is ever increasing. Color HDTV, infrared cameras and radar are examples of such sensors. And they are becoming increasingly used for mission purposes by the military, police, customs and coast guard onboard helicopters and fixed wing aircraft. These users have requirements for onboard presentation, analysis and storage. Use of weather radars and other similar types of sensors are flight oriented applications in major types of aircraft. Another application is the integration of cockpit and cabin surveillance systems onboard commercial airlines. Cabin surveillance systems, growing from cockpit door cameras to complete cabin surveillance, will use several cameras. The purpose is to acquire and store imagery from un-normal events including unruly passengers and eventual terrorists. The primary intentions are security awareness in the cockpit as well as collecting evidence for a potential prosecution.
Video
2012-03-12
In this presentation we will present a COTS solution for an ARINC 653 IMA based system. It will cover IMA concepts from an OS point of view and show how a platform can be built for application development. It will also cover DO-297, and how that can isolate applications for certification and test purposes and allow for easy configuration of multiple applications between different development teams. Presenter Alex Wilson, Wind River
Video
2015-05-07
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. The quality of fluids used in aviation, such as oil or fuel, is an extremely important safety issue. One way to reliably monitor fluids is through the use of special measurement sensors. In the episode “Fluid Measurements and Avionics” (9:13), an engineer at Meggitt demonstrates the capabilities of time-domain reflectometry sensors, explaining how they are assembled and used. The business case for monitoring oil and fuel degradation, and how to proactively take advantage of preventative maintenance is also explained.

Related Items

Technical Paper / Journal Article
2013-09-17
Technical Paper / Journal Article
2013-09-17
Standard
2012-05-03