• Video
  • 16-Mar-2012 09:20 EDT

High Speed Machining of CFRP Parts

00:27:41
Length:

Purchase Required to View Video

Short Preview Below

High Speed Machining of CFRP Parts Investigation of the influence of new geometries, cutting datas and coolant capabilities on the surface finish of CFRP parts. State of the art: Different CFRP grades and machining conditions make geometry adjustments to the tool necessary. Mechanical failures through machining operations can be avoided in most of the cases. New unidirectional CFRP grades and dry machining processes again lead to machining problems. This study investigates new geometries to avoid heat damage with dry maching and air coolant in case of unidirectional CFRP. With help of a thermo camera and the surface investigation with a scanning electron microscope, heat damage can be analysed and therefore new geometries can be developed and tested. Target is to develop a new multi purpose CFRP geometry to meet the requirements of the future. The reduction of different geometries used leads to major cost savings.

Presenter
Ingo von Puttkamer, Guhring oHG

Buy
Select
Price
List
Purchase to View
$19.00
Learn More
Technical Paper / Journal Article
2011-10-18
HIGH SPEED MACHINING OF CFRP P
Share
HTML for Linking to Page
Page URL
Grade
Rate It
No ratings yet

View More Video

Video
2012-03-23
: Fiber Placement equipment has historically been very large and very expensive. Therefore, the AFP process has been mostly exclusive to the larger aerospace companies of the world. In order to achieve more widespread use of the AFP process, a wider variety of machine configurations must be offered and cost of the equipment must be decreased. Commercially available, articulated robotic arms have been identified as an attractive, low cost option for AFP machine platforms. However, incorporating AFP material delivery technology with robotic arms has many challenges. These challenges relate to both hardware and software issues. This presentation will address the technical challenges of using robots as a machine platform for the AFP process and review the current status of this composites lamination equipment technology. Presenter Frederic Challois, Coriolis Composites
Video
2012-03-23
This article characterizes the special features of drilling of CFRP/Titanium and -Aluminium stacks. Simplified theoretic models will show how CFRP/Titanium stacks should be machined without scratches and burn marks contacting carbon. Low axial forces and smart chip removal technology are the main characteristics of the drilling tool technology, optimized to reach H8 quality in one shot operation. Presenter Peter Mueller-Hummel, Cutting Tools Inc.
Video
2012-03-23
At the end of 2006, two MTorres engineers visited the plant of Airbus UK in Filton receiving a new challenge: Find a more efficient way to manufacture Carbon Fiber Spars for the new A350 program. The range of possibilities were wide: manual infusion methods (RTM, RIM, RFI...), Automatic Taping & hot forming, or the new technology proposed, Fiberplacement or AFP. Two (2) options were considered: hot forming+ATL and AFP (both using prepeg technology.) The usage of a flat lay-up + hot forming technology was used in the only Airbus program that used carbon fiber for the wing manufacturing so far, the A400M. The expected greater complexity of A350 spar created doubts on the feasibility of using the above process, while the AFP technology, consisting of laying up directly on the final shape of the spar, also raised questions of technical feasibility, apart from the economic ?business case?, in case the productivity of the cell was not big enough. A ?Spar team?
Video
2013-04-16
International revealed its Project Horizon concept at the 2013 Mid-America Trucking Show, showcasing technology related to aerodynamics, lighting, and chassis that could be on the road within 24 to 36 months. Active grille shutters and unique application of LED light pipes are among those technologies.

Related Items

Training / Education
1997-11-03
Training / Education
2013-04-09
Article
2017-01-31
Technical Paper / Journal Article
2010-10-25
Training / Education
2017-10-23
Training / Education
1997-03-11
Article
2017-02-09
Training / Education
2013-04-09
Article
2017-03-16