• Video
  • 21-Mar-2012 10:00 EDT

Optimal Scheduling and Delay Analysis for AFDX End-Systems

00:24:45
Length:

Purchase Required to View Video

Short Preview Below

The present work aims at the reduction of transmission delay at the level of AFDX ES (Avionics Full Duplex Switched Ethernet End-Systems). To this end, two approaches, namely Network Calculus and response time analysis (RTA), are employed in the computation of upper bound delay. To evaluate the delay regarding different scheduling policies, the arrival curve of the flow on output of ES is established for given traffic shaping algorithm and service mode. Computational analysis shows that Bandwidth Allocation Gap (BAG) based scheduling is the optimal policy at the level of AFDX ES, which leads to the tightest output arrival curve among all possible scheduling policies. BAG-based scheduling consists in assigning higher priority to virtual links with smaller BAG thus corresponding to the well known Rate-Monotonic Algorithm. Furthermore, schedulability criterion are established based on RTA. Additionally, delay bound computation indicates that response time analysis provides a tighter delay bound than that obtained by Network Calculus. Numerical simulations are carried out to confirm the validity, the applicability, and the performance of the proposed scheduling scheme.

Presenter
Guchuan Zhu

Buy
Select
Price
List
Purchase to View
$19.00
Learn More
11VATC40302
Optimal Scheduling and Delay Analysis for AFDX End-Systems
2011-10-20
OPTIMAL SCHEDULING AND DELAY A
Share
HTML for Linking to Page
Page URL
Grade
Rate It
No ratings yet

View More Video

Video
2012-03-21
All Semi Vendors do have multi core CPUs in their portfolio and adding new devices every day. This is the only possibility to grow performance and fulfill Moore's law. Multi core offers a wide variety of possibilities to reduce hardware complexity, reduce power consumption, shrink board space, expand functionality and performance. On the other hand the software complexity goes up and this directly affects the ability to achieve a certified system. The main trend as of today and in the future is the rising number of cores in a single chip and the increasing functionality of the software. As this trend does not stop at safety critical systems, the System/Solution Architects have to question themselves how to guarantee data integrity, robustness, robust portioning, avoid multi point of failures and race conditions. This presentation will highlight ideas, do's and don'ts for those who will design a safety critical multi Core system today or in the near future.
Video
2012-03-19
By introducing the concept of a separation between graphics and logic, interpreted run time architecture, and defined communication protocol, the ARINC 661 standard has addressed many of the concerns that aircraft manufacturers face when creating cockpit avionics displays. However, before kicking off a project based on the standard, it is important to understand all aspects of the standard, as well as the benefits and occasional drawbacks of developing with ARINC 661 in mind. This white paper will first provide an overview of ARINC 661 to clarify its concepts and how these relate to the development process. The paper will also describe the benefits of using a distributed development approach, and will outline practical, real world considerations for implementing an ARINC 661-based solution. Finally, readers will learn how commercial tools can be used to simplify the creation of displays following the standard to speed development and reduce costs.
Video
2012-03-21
A significant step is achieved on the flight control actuation system toward the more electrical aircraft through the Airbus A380, A400M and the A350 development phase ongoing. The A380/A400M/A350 features a mixed flight control actuation power source distribution, associating electrically powered actuators with conventional FlyByWire hydraulic servocontrols. In the scope of the preparation of the future Airbus Aircraft, this paper presents the perspectives of the use of the EMA technologies for the flight control systems in the more electrical aircraft highlighting the main technical challenges need to treat: jamming susceptibility, ?on board? maintenance reduction, Operational reliability increase, power electronics and power management optimization, and regarding the environmental constraints, the predicted performances; the benefits associated to the optimized utilization of on-board power sources.
Video
2012-03-21
Design and Development of a Terabyte of Data Storage for Spaceflight. Presenter Chris Thames, NASA

Related Items

Technical Paper / Journal Article
2011-10-06
Standard
2000-02-17
Training / Education
2011-11-02
Standard
2006-09-12