• Video
  • 21-Mar-2012 10:03 EDT

Applying Critical-System Java to the Challenges of SMP Platforms

00:24:49
Length:

Purchase Required to View Video

Short Preview Below

In recent years, all major microprocessor manufacturers are transitioning towards the deploymenet of multiple processing cores on every chip. These multi-core architectures represent the industry consensus regarding the most effective utilization of available silicon resources to satisfy growing demands for processing and memory capacities. Porting off-the-shelf software capabilities to multi-core architectures often requires significant changes to data structures and algorithms. When developing new software capabilities specifically for deployment on SMP architectures, software engineers are required to address specific multi-core programming issues, and in the ideal, must do so in ways that are generic to many different multi-core target platforms. This talk provides an overview of the special considerations that must be addressed by software engineers targeting multi-core platforms and describes how the Java language facilitates solutions to these special challenges. The talk includes special emphasis on mission-critical and real-time configurations of the Java virtual machine on SMP hardware.

Presenter
Kelvin Nilsen

Buy
Select
Price
List
Purchase to View
$19.00
Learn More
Technical Paper / Journal Article
2011-10-18
APPLYING CRITICAL-SYSTEM JAVA
Share
HTML for Linking to Page
Page URL
Grade
Rate It
No ratings yet

View More Video

Video
2016-10-18
Before self-driving cars are safe for public roads, a technology called "Machine Learning" will have to be far more capable than it is today. In this episode of SAE Eye on Engineering, Editor-In-Chief Lindsay Brooke looks at the challenges ahead for autonomous driving. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show. Access archived episodes of SAE Eye on Engineering.
Video
2015-04-15
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Fuel efficiency, or simply put, how to get more mileage out of the same amount of fuel has become one of the main goals to be achieved by new automotive technologies in the future, thanks in part to new government regulations. In the episode “Fuel Efficiency: Racing toward CAFE 2025” (21:24) AVL engineers show simulation and testing being used to design more fuel efficient vehicles, including the equipment that actually analyzes fuel economy.
Video
2015-12-22
“Spotlight on Design” features video interviews and case studies, focusing on technology breakthroughs, hands-on testimonials, and the importance of fundamentals. Viewers are virtually taken to industry labs and research centers to learn how design engineers solve real-life problems. These challenges include enhancing product performance, reducing cost, improving quality and safety, while decreasing environmental impact, and achieving regulatory compliance. In the episode “Engine Development for Performance and Efficiency” (22:00), engineers from Ricardo and General Motors explain the importance of lessons learned on the race tracks, how using the appropriate design and simulation tools expedite development, and present the new testing frontiers now available with 3D printing.
Video
2012-02-15
Virtual testing is a method that simulates lab testing using multi-body dynamic analysis software. The main advantages of this approach include that the design can be evaluated before a prototype is available and virtual testing results can be easily validated by subsequent physical testing. The disadvantage is that accurate specimen models are sometimes hard to obtain since nonlinear components such as tires, bushings, dampers, and engine mounts are hard to model. Therefore, virtual testing accuracy varies significantly. The typical virtual rigs include tire and spindle coupled test rigs for full vehicle tests and multi axis shaker tables for component tests. Hybrid simulation combines physical and virtual components, inputs and constraints to create a composite simulation system. Hybrid simulation enables the hard to model components to be tested in the lab.

Related Items

Technical Paper / Journal Article
2010-10-25
Training / Education
2017-07-17
Technical Paper / Journal Article
2010-10-19
Training / Education
2011-11-02
Standard
2015-06-04
Standard
2017-03-09