• Video
  • 21-Mar-2012 10:05 EDT

Safety Critical Uses of Java

00:23:58
Length:

Purchase Required to View Video

Short Preview Below

The Java language is now the most popular programming language for the creation of new software capabilities. Its popularity has resulted in signficant economies of scale, with Java adopted as the primary language of instructional within many university curriculums, an abundance of reusable Java software components and Java software development tools available both from commercial suppliers and as open source technology, a large pool of competent Java developers from which to recruit staff, and a general willingness by senior staff software engineers to invest the effort required to learn this new programming language and technology. This talk describes the special approaches recommended for the use of Java in safety-critical deployments. The talk surveys the current state of the draft JSR-302 Safety Critical Java Specification and describes related experiences with commercially available technologies based on the constraints of early JSR-302 design discussions. Unlike traditional Java, the JSR-302 safety-critical subset of Java uses stack memory allocation instead of a garbage collected heap. Built-in library support is restricted to those libraries most relevant to safety-critical development requirements. And certain real-time library extensions to standard Java allow Java software components to be structured as periodic and aperiodic event handlers, perform low-level device input and output operations, and implement first-level interrupt handlers. Note to organizers: This topic is relevant to a variety of the sessions, including ATC 404, ATC 412, ATC 413, ATC 1103, ATC 1105. Please consider its presentation in any of those sessions, or potentially others. Thank you.

Presenter
Kelvin Nilsen

Buy
Select
Price
List
Purchase to View
$19.00
Learn More
Technical Paper / Journal Article
2011-10-18
SAFETY CRITICAL USES OF JAVA
Share
HTML for Linking to Page
Page URL
Grade
Rate It
No ratings yet

View More Video

Video
2012-06-18
Impact of driving patterns on fuel economy is significant in hybrid electric vehicles (HEVs). Driving patterns affect propulsion and braking power requirement of vehicles, and they play an essential role in HEV design and control optimization. Driving pattern conscious adaptive strategy can lead to further fuel economy improvement under real-world driving. This paper proposes a real-time driving pattern recognition algorithm for supervisory control under real-world conditions. The proposed algorithm uses reference real-world driving patterns parameterized from a set of representative driving cycles. The reference cycle set consists of five synthetic representative cycles following the real-world driving distance distribution in the US Midwestern region. Then, statistical approaches are used to develop pattern recognition algorithm. Driving patterns are characterized with four parameters evaluated from the driving cycle velocity profiles.
Video
2012-03-21
Many manufacturing companies want to apply AFP technology to complex high-curvature part shapes. As new AFP machine technologies are developed to specifically apply material over complex shapes, new and innovative NC programming approaches are needed to successfully, reliably, and accurately apply material with good consolidation, while meeting the fiber direction and coverage requirements. A big issue with AFP is the production rate vs. part complexity. Most complex shapes can be created with a single .125? wide strip (tow) of material. But the production time would be impractically long. So machine builders create 6, 8, 16, even 32 tow AFP heads, and use the widest tow possible for the highest laydown rates. But then wide compaction rollers on these systems have difficulty consolidating material over curved surfaces, and the minimum steering radius of wider tows challenge the software?s ability to meet the layup requirements.
Video
2012-03-21
In recent years, all major microprocessor manufacturers are transitioning towards the deploymenet of multiple processing cores on every chip. These multi-core architectures represent the industry consensus regarding the most effective utilization of available silicon resources to satisfy growing demands for processing and memory capacities. Porting off-the-shelf software capabilities to multi-core architectures often requires significant changes to data structures and algorithms. When developing new software capabilities specifically for deployment on SMP architectures, software engineers are required to address specific multi-core programming issues, and in the ideal, must do so in ways that are generic to many different multi-core target platforms. This talk provides an overview of the special considerations that must be addressed by software engineers targeting multi-core platforms and describes how the Java language facilitates solutions to these special challenges.
Video
2012-02-15
Zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing and boosting; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; thermal management; mechanical and lubrication systems; system level models for controls; system level models for vehicle fuel economy and emissions predictions. Presenter Fabio Bozza, Universita di Napoli

Related Items

Training / Education
2017-10-27
Training / Education
2018-02-05
Training / Education
2018-06-07
Technical Paper / Journal Article
2010-10-19
Standard
1987-05-01
Technical Paper / Journal Article
2010-10-19