• Video
  • 21-Mar-2012 10:05 EDT

Safety Critical Uses of Java

00:23:58
Length:

Purchase Required to View Video

Short Preview Below

The Java language is now the most popular programming language for the creation of new software capabilities. Its popularity has resulted in signficant economies of scale, with Java adopted as the primary language of instructional within many university curriculums, an abundance of reusable Java software components and Java software development tools available both from commercial suppliers and as open source technology, a large pool of competent Java developers from which to recruit staff, and a general willingness by senior staff software engineers to invest the effort required to learn this new programming language and technology. This talk describes the special approaches recommended for the use of Java in safety-critical deployments. The talk surveys the current state of the draft JSR-302 Safety Critical Java Specification and describes related experiences with commercially available technologies based on the constraints of early JSR-302 design discussions. Unlike traditional Java, the JSR-302 safety-critical subset of Java uses stack memory allocation instead of a garbage collected heap. Built-in library support is restricted to those libraries most relevant to safety-critical development requirements. And certain real-time library extensions to standard Java allow Java software components to be structured as periodic and aperiodic event handlers, perform low-level device input and output operations, and implement first-level interrupt handlers. Note to organizers: This topic is relevant to a variety of the sessions, including ATC 404, ATC 412, ATC 413, ATC 1103, ATC 1105. Please consider its presentation in any of those sessions, or potentially others. Thank you.

Presenter
Kelvin Nilsen

Buy
Select
Price
List
Purchase to View
$19.00
Learn More
Technical Paper / Journal Article
2011-10-18
SAFETY CRITICAL USES OF JAVA
Share
HTML for Linking to Page
Page URL
Grade
Rate It
No ratings yet

View More Video

Video
2012-03-21
As a result of recommendation from the Augustine Panel, the direction for Human Space Flight has been altered from the original plan referred to as Constellation. NASA's Human Exploration Framework Team (HEFT) proposes the use of a Shuttle Derived Heavy Lift Launch Vehicle (SDLV) and an Orion derived spacecraft (salvaged from Constellation) to support a new flexible direction for space exploration. The SDLV must be developed within an environment of a constrained budget and a preferred fast development schedule. Thus, it has been proposed to utilize existing assets from the Shuttle Program to speed development at a lower cost. These existing assets should not only include structures such as external tanks or solid rockets, but also the Flight Software which has traditionally been a ?long pole? in new development efforts. The avionics and software for the Space Shuttle was primarily developed in the 70's and considered state of the art for that time.
Video
2012-05-25
In support of the U.S Department of Energy's Vehicle Technologies Program, numerous vehicle technology combinations have been simulated using Autonomie. Argonne National Laboratory (Argonne) designed and wrote the Autonomie modeling software to serve as a single tool that could be used to meet the requirements of automotive engineering throughout the development process, from modeling to control, offering the ability to quickly compare the performance and fuel efficiency of numerous powertrain configurations. For this study, a multitude of vehicle technology combinations were simulated for many different vehicles classes and configurations, which included conventional, power split hybrid electric vehicle (HEV), power split plug-in hybrid electric vehicle (PHEV), extended-range EV (E-REV)-capability PHEV, series fuel cell, and battery electric vehicle.
Video
2016-10-18
Before self-driving cars are safe for public roads, a technology called "Machine Learning" will have to be far more capable than it is today. In this episode of SAE Eye on Engineering, Editor-In-Chief Lindsay Brooke looks at the challenges ahead for autonomous driving. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show. Access archived episodes of SAE Eye on Engineering.
Video
2012-05-22
This paper reports solubility, diffusivity and permeability data for soy and rapeseed methyl esters in polyethylene together with comparisons with methyl oleate and linoleate. These data were used to discuss the reliability of predictive models for diffusion and solubility of additive type molecules into semi-crystalline thermoplastic polymers. Presenter Emmanuel Richaud

Related Items

Technical Paper / Journal Article
2003-11-10
Technical Paper / Journal Article
2003-10-27