• Video
  • 23-Mar-2012 04:54 EDT

Ford: Driving Hybrid Efficiency

00:22:10
Length:

Purchase Required to View Video

Short Preview Below

Hybrid vehicles in the modern era were developed with a strong primary goal to increase fuel efficiency in the North American market. Over the last 15 years, this market has expanded from zero sales to as high as 3% of total US sales. Most recently, the portfolio of competitive offerings with HEV propulsion systems has grown even more to about 30 models on sale today. Some interesting features and attributes have evolved thru this wider array of products giving the customer much more choice of which characteristics to select to match their needs. Ford�s 3rd generation HEV system will be offered for sale this fall. With it, we have continued our focus on the Fuel Efficiency as the driving force for our efforts. The overall process for the system engineering and some of the relevant subsystem and component contributors to the Fuel Efficiency improvement reflected in the 2013 Model Year Fusion and CMAX Hybrids will be presented.

Presenter
Charles Gray, Ford Motor Co.

Buy
Select
Price
List
Purchase to View
$19.00
Learn More
Technical Paper / Journal Article
2012-02-21
APPLICATIONS OF HYBRID TECHNOL
Share
HTML for Linking to Page
Page URL
Grade
Rate It
No ratings yet

View More Video

Video
2016-07-06
The latest trend in electrified vehicles is the 48-Volt Hybrid. In this episode of SAE Eye on Engineering, Editor-In-Chief Lindsay Brooke looks at Delphi's new 48-Volt Hybrid system that enters production next year. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show. Access archived episodes of SAE Eye on Engineering.
Video
2012-03-29
The Idaho National Laboratory is collecting data from grid-connected electric drive vehicles and charging infrastructure that have been deployed across the United States in five large-scale demonstrations funded by the U.S. Department of Energy. These demonstrations include The EV Project infrastructure demonstration, led by ECOtality North America; Coulomb Technologies� ChargePoint America infrastructure demonstration; General Motors� Chevrolet Volt extended range electric vehicle demonstration; Chrysler�s Ram plug-in hybrid electric vehicle demonstration; and the Ford Escape plug-in hybrid electric vehicle advanced research fleet demonstration. This presentation describes real-world vehicle and charging infrastructure usage observed during the early stages of these demonstrations. Presenter John Smart, Idaho National Lab.
Video
2012-05-23
Due to the integration of many interacting subsystems like hybrid vehicle management, energy management, distance management, etc. into the VCU platform the design steps for function development and calibration become more and more complex. This makes an aid necessary to relieve the development. Therefore, the aim of the proposed simulation-based development and calibration design is to improve the time-and-cost consuming development stages of modern VCU platforms. A simulation-based development framework is shown on a complex function development and calibration case study using an advanced powertrain concept with a plug-in hybrid electric vehicle (PHEV) concept with two electrical axles. Presenter Thomas Boehme, IAV GmbH
Video
2012-05-23
One promising solution for increasing vehicle fuel economy, while still maintaining long-range driving capability, is the plug-in hybrid electric vehicle (PHEV). A PHEV is a hybrid electric vehicle (HEV) whose rechargeable energy source can be recharged from an external power source, making it a combination of an electric vehicle and a traditional hybrid vehicle. A PHEV is capable of operating as an electric vehicle until the battery is almost depleted, at which point the on-board internal combustion engine turns on, and generates power to meet the vehicle demands. When the vehicle is not in use, the battery can be recharged from an external energy source, once again allowing electric driving. A series of models is presented which simulate various powertrain architectures of PHEVs. To objectively evaluate the effect of powertrain architecture on fuel economy, the models were run according to the latest test procedures and all fuel economy values were utility factor weighted.

Related Items

Technical Paper / Journal Article
2011-08-30
Technical Paper / Journal Article
2009-10-06
Book
2013-12-16
Technical Paper / Journal Article
2009-12-13