• Video
  • 18-Sep-2012 03:29 EDT

Review and Assessment of the ISO 26262 Draft Road Vehicle - Functional Safety

00:21:27
Length:

Purchase Required to View Video

Short Preview Below

ISO 26262 is the first comprehensive automotive safety standard that addresses the safety of the growing number of electric/electronic and software intensive features in today's road vehicles. This paper assesses the standard's ability to provide safety assurance. The strengths of the standard are: (1) emphasizing safety management and safety culture; (2) prescribing a system engineering development process; (3) setting up a framework for hazard elimination early in the design process; (4) disassociating system safety risk assessment from component probabilistic failure rate. The third and fourth strengths are noteworthy departure from the philosophy of IEC61508. This standard has taken much-needed and very positive steps towards ensuring the functional safety of the modern road vehicles. SAE publications from industry show a lot of enthusiasm towards this standard.

This paper suggested a number of items to be considered further strengthen the standard's ability to provide safety assurance. First, the Automotive Safety Integrity Level (ASIL) assessment may want to consider only the severity level, so that the subjectivity involved in likelihood assessment is eliminated. The ASIL assessment also needs to be standardized across manufacturers in order to address the tension between safety and business competitiveness. Government, industry consortium, and research institutions may want to work together on ASIL standardization efforts. Second, this standard provides little guidance on how to eliminate hazards in the design, but rather provides details on how to design and evaluate the effectiveness of component failure detection and control mechanisms. This paper identifies research that could be conducted on how to adapt the System Theoretic Accident Modeling and Process model during the design phase. Third, this standard gives detailed guidance on reliability engineering methods for component failures, but little on system safety design methods. Reliability and safety are different attributes of the system. This standard can be improved by further research on adapting system safety engineering methods to this standard. Fourth, the standard also substitutes good software systems engineering practices for software safety, although this is on par with other industry standards. Further research is needed to address software safety assurance. Fifth, the need for more detail in the safety assurance process and plan for product and operation phases of the product are discussed. Last, the needs for better design methods and safety assurance plan concerning driver/vehicle interaction design are also presented.

Presenter
Qi Van Eikema Hommes, Volpe Transportation Systems Center

Buy
Select
Price
List
Purchase to View
$19.00
Learn More
Technical Paper / Journal Article
2012-04-16
TECH PPR 2012 CONG
Share
HTML for Linking to Page
Page URL
Grade
Rate It
No ratings yet

View More Video

Video
2012-01-30
OBD requirements for aftertreatment system components require monitoring of the individual system components. One such component can be an NH3-SCR catalyst for NOx reduction. An OBD method that has been suggested is to generate positive or negative spikes in the inlet NH3 concentration, and monitor the outlet NOx transient response. A slow response indicates that the catalyst is maintaining its NH3 storage capacity, and therefore it is probably not degraded. A fast response indicates the catalyst has lost NH3 storage capacity, and may be degraded. The purpose of the work performed at Southwest Research Institute was to assess this approach for feasibility, effectiveness and practicality. The presentation will describe the work performed, results obtained, and implications for applying this method in test laboratory and real-world situations. Presenter Gordon J. Bartley, Southwest Research Institute
Video
2012-01-24
Sensing exhaust gas temperature is a key component in diesel after treatment systems for both control and diagnostics. Accuracy varies significantly depending upon the sensing technology and implementation in the system. Prior published work has demonstrated that resistance based temperature sensors are not able to achieve the system accuracy required for advanced diagnostics over the life of the emission system. This presentation will show that it is feasible to achieve better than �10�C end of life system accuracy by means of active thermocouple technology. Results from tests at Michigan Technological University will be used to illustrate diagnostic uncertainty related to the application of temperature sensors and a specific DOC/DPF example will be used to show the benefits of accurate temperature based diagnostics. Presenter D. P. Culbertson, Watlow Gordon
Video
2017-01-04
One of the fastest growing and most important car-industry shows starts this week in Las Vegas and it doesn't even have the word 'automotive' in its title. In this episode of SAE Eye on Engineering, Editor-In-Chief Lindsay Brooke looks at CES 2017. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show. Access archived episodes of SAE Eye on Engineering.
Video
2012-02-21
Energy Storage Panel: Are Energy Storage Systems Ready for Prime-Time?

Related Items

Technical Paper / Journal Article
2010-10-25
Training / Education
2017-10-26