• Video
  • 22-May-2012 02:14 EDT

Enabling Exponential Growth of Automotive Network Devices while Reducing the Wired Communication Infrastructure with Security, Reliability, and Safety

00:16:00
Length:

Purchase Required to View Video

Short Preview Below

The CAN protocol has served the automotive and related industries well for over twenty-five (25) years now; with the original CAN protocol officially released in 1986 followed by the release of CAN 2.0 in 1991. Since then many variants and improvements in CAN combined with the proliferation of automotive onboard microprocessor based sensors and controllers have resulted in CAN establishing itself as the dominant network architecture for automotive onboard communication in layers one (1) and two (2). Going forward however, the almost exponential growth of automotive onboard computing and the associated devices necessary for supporting said growth will unfortunately necessitate an equivalent growth in the already crowded wired physical infrastructure unless a suitable wireless alternative can be provided. While a wireless implementation of CAN has been produced, it has never obtained real traction within the automotive world. Other alternative methodologies for providing wireless connectivity have been much more pervasive and accepted, but none of them provide anything more to CAN interfaces than a CAN-to-Wireless Bridge; with Wi-Fi, Blue Tooth, and GSM being the primary wireless network architectures bridging to CAN. What is proposed within this paper is more than simply a wireless extension of CAN in that it does more than extend CAN into the wireless domain (as was the case with CANRF). As pure wireless CAN with no accommodations for heavy utilization would only exacerbate CAN's primary deficiency of starving out lower priority messages; since there would be no way to isolate devices in sub-networks as could be done with a wired infrastructure. Rather, the proposal within this paper would attack this deficiency head-on by modifying the newly defined wireless network protocol and architecture, DQWA (Distributed Queuing Wireless Arbiter) to not only extend CAN into the wireless domain, but also addresses CAN's more prominent shortcomings. DQWA is a solution that provides both security and reliability within a wireless framework, while maintaining CAN's distributed network communication methodology and implicit avoidance of single points of failure within the network.

Presenter
Graham Campbell, Arynga
Jon Barton Shields, Arynga

Buy
Select
Price
List
Purchase to View
$19.00
Share
HTML for Linking to Page
Page URL
Grade
Rate It
No ratings yet

View More Video

Video
2012-03-21
TAUPE is a collaborative research project co-funded by the European Commission in the framework of the Seventh Framework Programme (FP7). It addresses the aeronautic sector and is composed of 17 partners from 6 European countries. The project lasts 3,5 years (September 2008 ? February 2012), is led by Safran Engineering Services (Labinal, SAFRAN Group) and has a budget of 5.5M?. The project aims to simplify the electrical architecture of aircraft and to reduce the length and mass of cabling by introducing PLC (PowerLine Communication) or PoD (Power over Data) technologies inside the aircraft. Both technologies essentially aim to supply power and data over the same cable.
Video
2017-09-06
Automakers are looking to harness the sun's energy to power electrical components in new vehicles. In this episode of SAE Eye on Engineering, Editor-In-Chief Lindsay Brooke looks at Audi's plan to integrate solar cells into the roofs of their electric vehicles. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show. Access archived episodes of SAE Eye on Engineering.
Video
2015-04-16
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Automated driving is made possible through the data acquisition and processing of many different kinds of sensors working in unison. Sensors, cameras, radar, and lidar must work cohesively together to safely provide automated features. In the episode “Automated Vehicles: Converging Sensor Data” (8:01), engineers from IAV Automotive Engineering discuss the challenges associated with the sensor data fusion, and one of Continental North America’s technical teams demonstrate how sensors, radars, and safety systems converge to enable higher levels of automated driving.
Video
2012-02-15
Virtual testing is a method that simulates lab testing using multi-body dynamic analysis software. The main advantages of this approach include that the design can be evaluated before a prototype is available and virtual testing results can be easily validated by subsequent physical testing. The disadvantage is that accurate specimen models are sometimes hard to obtain since nonlinear components such as tires, bushings, dampers, and engine mounts are hard to model. Therefore, virtual testing accuracy varies significantly. The typical virtual rigs include tire and spindle coupled test rigs for full vehicle tests and multi axis shaker tables for component tests. Hybrid simulation combines physical and virtual components, inputs and constraints to create a composite simulation system. Hybrid simulation enables the hard to model components to be tested in the lab.

Related Items

Technical Paper / Journal Article
2010-10-19