• Video
  • 29-May-2012 03:12 EDT

Low Cost Carbon Fiber Materials and Processing Technologies

00:20:44
Length:

Purchase Required to View Video

Short Preview Below

The need for light-weighting of automotive structures has spurred on a tremendous amount of interest in and development of low cost carbon fiber composite materials and manufacturing. This presentation provides a description of the commercial carbon fiber concept compared to traditional aerospace and specialty carbon fiber products. A specific update is presented on the development and commercialization of new low cost carbon fiber based on lignin / PAN precursor technology. The second focus of the presentation is on carbon fiber composite manufacturing processes, including carbon SMC, RTM, prepregs, and thermoplastic processes. Advantages and disadvantages of these processes are discussed, especially related to low cost manufacturing.

Presenter
George Husman, Zoltek Companies Inc.

Buy
Select
Price
List
Purchase to View
$19.00
Share
HTML for Linking to Page
Page URL
Grade
Rate It
No ratings yet

View More Video

Video
2012-03-16
With the growing use of carbon fiber composite structure in Aircraft Manufacturing, the challenge of drilling carbon fiber stacked with Titanium has become a focus point. Due to the abrasive nature of the carbon fiber (CF), cutting tool life is relatively short when drilling carbon fiber stalked with Titanium. A common drill wear indicator is exit burr formation in the Titanium. As drilling tools wear due to the abrasive nature of the CF, the exit burr in the in the Titanium increases. This study seeks to understand the factors that lead to tool wear and exit burr formation. A correlation may be made relating drilling thrust forces with exit burr formation. Different cutting tools geometries and materials are studied using a high speed camera to attempt to understand the factors influencing exit burr formation. Findings are optimized and tested. Decreasing exit burr in the drilling of CF and Titanium may increase tool life thereby reducing tool costs to airframe manufacturers.
Video
2017-05-11
Carbon fiber composites make Formula One racecars go faster, make airliners fly farther, and can make cars and trucks lighter, to save fuel. In this episode of SAE Eye on Engineering, Editor-In-Chief Lindsay Brooke looks at Magna and Ford's new carbon fiber engine cradles. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show. Access archived episodes of SAE Eye on Engineering.
Video
2012-03-22
Electroimpact Automatic Fiber Placement (AFP) machines lay-up composite parts by accurately placing carbon fiber tow (strips of impregnated carbon fiber) on a mould. In order to achieve high accuracy at high speeds, the processes of feeding and cutting tows must be tuned. Historically, the tuning has been a time-consuming, manual process. This paper will present a methodology to replace manual measurements with an automated laser, improve measurement speed by an order of magnitude, improve accuracy from +/? 0.020? (manual) to +/? 0.015? (laser), and eliminate human error. Presenter Joshua Cemenska, Electroimpact Inc.
Video
2012-05-23
This paper presents a new concept for a 100% plastic prototype automotive door panel. This concept has the potential of providing a weight reduction of up to 40% compared to conventional steel door panels, but with equivalent performance (static strength). This innovative technology can be used for a variety of exterior automotive parts. The concept includes a composite sandwich panel combination of GFRP (glass fiber reinforced polymer), and LACTIF®, which is expanded beads foam made from PLA (polylactic acid) and developed by JSP Corporation. This GFRP+LACTIF® composite design offers the following characteristics: Excellent environmental resistance Strong adhesion Equivalent static strength (vs. conventional door panels) Design flexibility This concept also offers an alternative to conventional steel door panel systems by using unsaturated polyester material of plant origin as part of the GFRP composite.

Related Items

Technical Paper / Journal Article
2011-04-12
Technical Paper / Journal Article
2011-04-12
Technical Paper / Journal Article
2011-04-12
Article
2016-11-15