• Video
  • 06-Jun-2012 08:49 EDT

Cycle-to-Cycle Variations Based Unsteady Effects on Spray Combustion in Internal Combustion Engines by Using LES

00:19:00
Length:

Purchase Required to View Video

Short Preview Below

Cycle-to-cycle variations of combustion processes strongly affect the emissions, specific fuel consumption as well as work output. Especially Direct Injection Spark-Ignition (DISI) engines are very sensitive to cyclic fluctuations within the combustion chamber. Multi-cycle Large Eddy Simulation (LES) based analysis has been used for investigating unsteady effects of spray combustion processes and misfires. A realistic four-stroke DISI internal combustion engine configuration was taken under consideration. The effects of variable spray boundary conditions on spray combustion are discussed first. A qualitative analysis of the intensity of cycle-to-cycle variations of in-cylinder pressure is presented for various combinations of injection parameters and ignition points. Finally, the effect of ignition probability and analysis of misfires are pointed out. The described above processes were discussed in terms of mean and standard deviation of temperature, velocity and pressure.

Presenter
Dmitry Goryntsev

Buy
Select
Price
List
Purchase to View
$19.00
Share
HTML for Linking to Page
Page URL
Grade
Rate It
No ratings yet

View More Video

Video
2012-05-10
Turbulent Jet Ignition is an advanced spark initiated pre-chamber combustion system for otherwise standard spark ignition engines. Combustion in the main chamber is initiated by jets of partially combusted (reacting) pre-chamber products which provide a high energy ignition source. The resultant widely distributed ignition sites allow relatively small flame travel distances enabling short combustion durations and high burn rates. This presentation outlines development of this combustion concept in a modern normally aspirated PFI production engine. Experimental results have highlighted high thermal efficiency (42.8%), significant fuel economy improvement (>20%), low engine out NOx (<10 ppm), knock limit extension, high load capability (>13 bar IMEPn) and high speed operation (5500 rev/min). Presenter William P Attard, MAHLE Powertrain LLC

Related Items

Training / Education
2018-08-15
Training / Education
2017-12-18
Training / Education
1999-09-27