• Video
  • 18-Jun-2012 12:30 EDT

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

00:13:32
Length:

Purchase Required to View Video

Short Preview Below

A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO2 oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.

A test procedure developed by Hutton et al. [1, 2] was modified to improve the ability to model the experimental data and provide additional insight into passive oxidized PM in a CPF. A test protocol and plan was developed to allow PM oxidation rates by NO2 to be determined from engine test cell data. An experimental matrix consisting of CPF inlet temperatures from 250 to 450 �C with varying NOX/PM from 25 to 583and NO2/PM ratios from 5 to 240 was used.

SME biodiesel was volumetrically blended with ULSD in 10% (B10) and 20% (B20) portions. This blended fuel was then used to evaluate the effect of biodiesel on passive oxidation rates. Four tests were performed with B10 and four tests with B20. Gathering data to determine the effect of fuel type (ULSD and biodiesel blends) on PM oxidation is the primary goal. Data from fifteen tests completed with ultra low sulfur diesel (ULSD) fuel and one additional engine platform is used to compare to results from SME biodiesel tests [1, 2].

The experimental reaction rates during passive oxidation varied based upon the average CPF temperature, NO2 concentrations, and the NOX/PM ratios for each engine and with all fuels. The data collected is directly comparable to ULSD data from prior experimental tests [1, 2], but requires a high fidelity model that includes NO2 and thermal oxidation mechanisms and back diffusion to determine the details of the PM oxidation process.

Presenter
Kenneth Lee Shiel, Michigan Technological University

Buy
Select
Price
List
Purchase to View
$19.00
Learn More
Technical Paper / Journal Article
2012-04-16
TECH PPR 2012 CONG SP-2324
Share
HTML for Linking to Page
Page URL
Grade
Rate It
No ratings yet

View More Video

Video
2012-06-18
Four-way, integrated, diesel emission control systems that combine selective catalytic reduction for NOx control with a continuously regenerating trap to remove diesel particulate matter were evaluated under real-world, on-road conditions. Tests were conducted using a semi-tractor with an emissions year 2000, 6-cylinder, 12 L, Volvo engine rated at 287 kW at 1800 rpm and 1964 N-m. The emission control system was certified for retrofit application on-highway trucks, model years 1994 through 2002, with 4-stroke, 186-373 kW (250-500 hp) heavy-duty diesel engines without exhaust gas recirculation. The evaluations were unique because the mobile laboratory platform enabled evaluation under real-world exhaust plume dilution conditions as opposed to laboratory dilution conditions. Real-time plume measurements for NOx, particle number concentration and size distribution were made and emission control performance was evaluated on-road.
Video
2012-02-16
Exhaust Emission Control: DPF Systems. Presenter Shingo Iwasaki, NGK Insulators, Ltd.
Video
2012-06-18
Manganese oxides show high catalytic activity for CO and HC oxidation without including platinum group metals (PGM). However, there are issues with both thermal stability and resistance to sulfur poisoning. We have studied perovskite-type YMnO3 (YMO) with the aim of simultaneously achieving both activity and durability. This paper describes the oxidation activity of PGM-free Ag/i-YMO, which is silver supported on improved-YMO (i-YMO). The Ag/i-YMO was obtained by the following two methods. First, Mn4+ ratio and specific surface area of YMO were increased by optimizing composition and preparation method. Second, the optimum amount of silver was supported on i-YMO. In model gas tests and engine bench tests, the Ag/i-YMO catalyst showed the same level of activity as that of the conventional Pt/?-Al2O3 (Pt = 3.0 g/L). In addition, there was no degradation with respect to either heat treatment (700°C, 90 h, air) or sulfur treatment (600°C to 200°C, total 60 h, 30 ppm SO2).
Video
2012-06-18
The fatty acid methyl esters (FAME's) - in Europe mostly RME (Rapeseed methyl ester) - are used in several countries as alternative biogene Diesel fuels in various blending ratios with fossil fuels (Bxx). Questions often arise about the influences of these biocomponents on the modern exhaust aftertreatment systems and especially on the regeneration of Diesel particle filters (DPF). In the present work different regeneration procedures of DPF systems were investigated with biofuels B0, B20 & B100. The tested regeneration procedures were: passive regenerations: DOC + CSF; CSF alone, active regenerations: standstill burner; fuel injections & DOC. During each regeneration on-line measurements of regulated and unregulated emission components (nanoparticles & FTIR) were conducted. It can be stated that the increased portion of RME in fuel provokes longer time periods to charge the filter with soot.

Related Items

Training / Education
2005-02-03
Technical Paper / Journal Article
1945-01-01
Technical Paper / Journal Article
1963-01-01
Technical Paper / Journal Article
1960-01-01
Technical Paper / Journal Article
1962-01-01
Technical Paper / Journal Article
1943-01-01
Technical Paper / Journal Article
1960-01-01
Technical Paper / Journal Article
1925-01-01
Technical Paper / Journal Article
1974-02-01