• Video
  • 15-Jun-2012 06:13 EDT

Development of DPF/SCR System for Heavy Duty Diesel Engine


Purchase Required to View Video

Short Preview Below

The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode.

Seung-il Moon

Purchase to View
Learn More
Technical Paper / Journal Article
TECH PPR 2012 CONG SP-2324
HTML for Linking to Page
Page URL
Rate It
No ratings yet

View More Video

A conceptual project aimed at understanding the fundamental design considerations concerning the implementation of catalyst systems on outboard marine engines was carried out by Mercury Marine, with the support of the California Air Resources Board. In order to keep a reasonable project scope, only electronic fuel injected four-stroke outboards were considered. While they represent a significant portion of the total number of outboard engines sold in the United States, carbureted four-strokes and direct injected two-strokes pose their own sets of design constraints and were considered to be outside the scope of this study. Recently, three-way catalyst based exhaust emissions aftertreatment systems have been introduced into series production on sterndrive and inboard marine spark ignition engines in North America. The integration of catalyst systems on outboards is much more challenging than on these other marine propulsion alternatives.
EGR coolers are used in combustion engines to reduce NOx emissions. However, heat transfer in these coolers also results in thermophoresis-temperature-gradient driven motion of suspended particles towards cooler regions-which leads to significant soot deposition. Presenter Meisam Mehravaran
Consumers design different PHEVs than expert analysts assume. Experts almost uniformly assume PHEVs that offer true all-electric driving for 10 to 60 miles; consumers are more likely to design PHEVs that do not offer true all-electric driving and have short ranges over which they use grid-electricity. Thus consumers? PHEV designs are less expensive. These consumer PHEV designs do, or don?t, produce lower GHG emissions than experts? PHEVs over the next ten years. The devil is in the details, i.e., which powerplant emissions to assign to new electricity demand: marginal or average. If (based on marginal powerplant emissions) it makes almost no difference whether we sell consumer-designed or expert-assumed PHEVs over the next ten years, yet as the grid continues to de-carbonize all-electric PHEV designs emerge as clearly the better option, there is a trajectory we could be on from blended, ?short range? PHEVs to all-electric ?long range? PHEVs.
Selective catalytic reduction (SCR) catalysts will be used to reduce oxides of nitrogen (NOx) emissions from internal combustion engines in a number of applications [1,2,3,4]. Southwest Research Institute® (SwRI)® performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and an Fe-zeolite formulation. This work describes NOx timed response to ammonia (NH3) transients as a function of thermal aging time and temperature. It has been proposed that the response time of NOx emissions to NH3 transients, effected by changes in diesel emissions fluid (DEF) injection rate, could be used as an on-board diagnostic (OBD) metric. The objective of this study was to evaluate the feasibility and practicality of this OBD approach.

Related Items

Training / Education
Training / Education
Training / Education