• Video
  • 10-May-2012 09:21 EDT

Future Development of EcoBoost Technology

00:30:09
Length:

Purchase Required to View Video

Short Preview Below

Ford's EcoBoost GTDI engine technology (Gasoline Direct Injection, Turbo-charging and Downsizing) is being successfully implemented in the market place with the EcoBoost option accounting for significant volumes in vehicle lines as diverse as the F150 pickup truck, Edge CUV and the Lincoln MKS luxury sedan. A logical question would be what comes after GTDI? This presentation will review some of the technologies that will be required for further improvements in CO2, efficiency and performance building on the EcoBoost foundation as well as some of the challenges inherent in the new technologies and approaches.

Presenter
Eric W. Curtis, Ford Motor Co.

Buy
Select
Price
List
Purchase to View
$19.00
Learn More
Technical Paper / Journal Article
FUTURE DEVELOPMENT OF ECOBOOST
Share
HTML for Linking to Page
Page URL
Grade
Rate It
No ratings yet

View More Video

Video
2012-05-10
The worldwide drive to improved energy efficiency for engine systems is being supported by several engine R&D programs at Southwest Research Institute (SwRI). This research includes large programs in major-market engine categories, such as heavy-duty, non-road, and light-duty; and includes diesel, gasoline, and alternative fuel aspects. This presentation describes several key diesel engine programs being pursued under the SwRI Clean High Efficiency Diesel Engine consortium (CHEDE-VI), whose goal is to demonstrate future diesel technology exceeding 50% brake thermal efficiency. Additionally, SwRI?s High Efficiency Dilute Gasoline Engines consortium (HEDGE-II), is reviewed, where advanced technology for ultra-high efficiency gasoline engines is being demonstrated. The HEDGE-II program is built upon dilute gasoline engine research, where brake thermal efficiencies in excess of 42% are being obtained for engines applicable to the light-duty market. Presenter Charles E.
Video
2011-11-04
June 2009, Mitsubishi Motors launched the first mass produced battery electric vehicle, the i-MiEV (?i? Mitsubishi innovative Electric Vehicle) in Japan. Since then , Mitsubishi Motors has continued to develop the i-MiEV for the global market and is preparing for November 2011 launch in the US. This presentation will provide an update of the projects global status, the challenge of developing the Quickcharging infrastructure and actions necessary to bring advanced technology vehicles to the mainstream consumer. Presenter David N. Patterson, Mitsubishi Motors R&D of America Inc.
Video
2011-11-04
With the introduction of the Chevrolet Volt, the Electrification of the Automobile begins in earnest, by offering a car that runs off of grid energy that has mass market appeal. The Volt offers a vehicle which is driven primarily by electricity under ?real world? driving conditions, while not presenting the driver with inconvenient choices about range and recharge time, or the disconcerting experience of a real possibility of becoming stranded. The Voltec powertrain arrangement enables the Volt to be an Extended Range Electric Vehicle, or E-REV and gives full performance utilizing only electrical energy from the grid for most driving, and a seamless transition to gasoline energy for longer and less frequent trips to maintain full vehicle utility. General Motors and its suppliers has had to the lead developments of fundamental component technologies that were not addressed by earlier, more simple hybridization work.
Video
2012-05-10
The benefits of adding variable compression ratio (VCR) capability to a Gasoline Turbocharged Direct Injection (GTDI) has been experimentally explored by AVL to quantify the potential efficiency improvements along with other combustion benefits and challenges. The development process is discussed along with key results showing how the combination of VCR, GDI, external cooled EGR and variable cam phasing was optimized to achieve maximum benefit. The concept demonstrates aggressive downsizing capability with BMEP levels above 40 bar BMEP with a two-stage turbocharging system on 95 RON gasoline. The iso-BSFC sweet spot was also improved with reduced BSFC over a broader operating range. The issues of knock, low speed pre-ignition, particulates and sensitivity to octane level and ambient temperature conditions were also investigated and are discussed. Engine level results are shown translated into predicted NEDU vehicle fuel economy improvements.

Related Items

Technical Paper / Journal Article
1908-01-01
Training / Education
2011-04-12
Technical Paper / Journal Article
2007-03-06
Training / Education
2010-08-03