• Video
  • 10-May-2012 09:29 EDT

Advanced Combustion & System Engineering - Affordable Fuel Economy?


Purchase Required to View Video

Short Preview Below

Future fuel economy targets represent a significant challenge to the automotive industry. While a range of technologies are in research and development to address this challenge, they all bring additional cost and complexity to future products. The most cost effective solutions are likely to be combinations of technologies that in isolation might have limited advantages but in a systems approach can offer complementary benefits. This presentation describes work carried out at Ricardo to explore Intelligent Electrification and the use of Stratified Charge Lean Combustion in a spark ignition engine. This includes a next generation Spray Guided Direct Injection SI engine combustion system operating robustly with highly stratified dilute mixtures and capable of close to 40% thermal efficiency with very low engine-out NOx emissions. The use of micro-hybrid functionality for energy recovery, e-boost technology for enhanced transient response, advanced thermal systems for octane control and a low cost energy storage system have been explored to provide an Intelligent Electrification approach to systems engineering. This combination of technologies is shown to be highly cost effective in comparison with full hybrid systems.

Mark J. Christie, Ricardo Inc.

Purchase to View
HTML for Linking to Page
Page URL
Rate It
No ratings yet

View More Video

Conventional hybrids have been marketed in the US for over a decade, with very high quality scores and high consumer satisfaction. However, their cost is still too high for mass market acceptance and their sales continue to be almost entirely to early adopters. This presentation will discuss mainstream consumer discounting of future fuel savings and how much they might be willing to pay, then focus on the potential for future hybrid efficiency improvements, synergies with other technologies, and cost reduction. The future cost reduction and efficiency benefits of the input powersplit and the P2 (parallel twin-clutch) hybrid systems are compared and projections offered through 2030. Presenter John German, International Council On Clean Transport
Evolving the current state of the art Hybrid Technology for vehicles with plug-in capability will yield three significant results, the displacement of petroleum with electricity for transportation, improved efficiency and reduced emissions. As the technology evolves from the Ford Escape Hybrid Plug-In demo fleet, Ford is in the final stages of development of the C-Max Energi, which will be delivered in 2012 as a highly efficient, full purpose vehicle designed to meet customer expectations without compromise. Presenter Charles Gray, Ford Motor Co.
Consumers design different PHEVs than expert analysts assume. Experts almost uniformly assume PHEVs that offer true all-electric driving for 10 to 60 miles; consumers are more likely to design PHEVs that do not offer true all-electric driving and have short ranges over which they use grid-electricity. Thus consumers? PHEV designs are less expensive. These consumer PHEV designs do, or don?t, produce lower GHG emissions than experts? PHEVs over the next ten years. The devil is in the details, i.e., which powerplant emissions to assign to new electricity demand: marginal or average. If (based on marginal powerplant emissions) it makes almost no difference whether we sell consumer-designed or expert-assumed PHEVs over the next ten years, yet as the grid continues to de-carbonize all-electric PHEV designs emerge as clearly the better option, there is a trajectory we could be on from blended, ?short range? PHEVs to all-electric ?long range? PHEVs.
Research in plug in vehicles (PHEV and BEV) has of course been ongoing for decades, however now that these vehicles are finally being produced for a mass market an intense focus over the last few years has been given to proper evaluation techniques and standard information to effectively convey efficiency information to potential consumers. The first challenge is the development of suitable test procedures. Thanks to many contributions from SAE members, these test procedures have been developed for PHEVs (SAE J1711 now available) and are under development for BEVs (SAE J1634 available later this year). A bigger challenge, however, is taking the outputs of these test results and dealing with the issue of off-board electrical energy consumption in the context of decades-long consumer understanding of MPG as the chief figure of merit for vehicle efficiency.

Related Items

Technical Paper / Journal Article
Training / Education
Training / Education