• Video
  • 05-Jun-2012 06:33 EDT

Electrified Vehicle Penetration Scenarios in Europe: Economic and Environmental Impacts

00:17:14
Length:

Purchase Required to View Video

Short Preview Below

What will the passenger car fleet look like over the next two decades? As most expected, affordability and convenience are the major drivers of new vehicle technology penetration into the market. Within this scope, vehicle electrification strategy to limit oil dependence and meet the European targets for CO2 emissions should be cost-effective and convenient to the buyer.

This paper will focus first, through different economic models, on the penetration of passenger electrified vehicles (Plug-in Hybrid Vehicles PHVs and Electric Vehicles EVs) in Europe (EU15: 15 European Union member countries) up to 2030. Economic models are based on real world use behaviors and driving patterns in order to compute fuel and energy consumption and to estimate total cost of the vehicle including incentives. The economic models use household wages in order to later make conclusions on vehicle technology market shares by vehicle classes. Later, the study investigates how user behavior, fuel cost and electric power prices would impact the electrified vehicle penetration of the car fleet. Furthermore, the impact of electrified vehicle fleet penetration on reduction of CO2 emissions and on electricity demand is assessed.

Presenter
Elias Zgheib, Mines Paristech

Buy
Select
Price
List
Purchase to View
$19.00
Learn More
Share
HTML for Linking to Page
Page URL
Grade
Rate It
No ratings yet

View More Video

Video
2012-02-01
Watlow and EmiSense Technologies, LLC are commercializing an improved electronic particulate matter (PM) sensor that has real-time measurement capability and improved sensitivity. To demonstrate the capability of this improved sensor of on board diagnostics (OBD) for failure detection of diesel particle filters (DPF), independent measurements were performed by university of California Riverside (UCR) and by Southwest Research Institute (SwRI) to characterize the engine PM emissions and to compare with the PM sensor response. In situ PM measurements from PM sensors correlate well with real-time gravimetric measurements. In addition, particle size and particle number data are presented and discussed.Due to an improved design update, the sensitivity of the sensor could have been significantly increased.
Video
2012-05-10
Downsizing and downspeeding are two efficient strategies to reduce vehicles CO2 emission, provided that high BMEP can be achieved at any engine speed under clean, safe, stable and efficient combustion. With a 6:1 minimum compression ratio, the MCE-5 VCRi achieves 40 bar peak BMEP at 1200 rpm with no irregular combustion. If peak BMEP is maintained below 35 bar, fuel enrichment is no longer necessary. When running at part loads, the engine operates at high compression ratios (up to 15:1) to minimize BSFC and maximize the sweet spot area on the map. Next generation MCE-5 VCRi engines will combine VCR and stoichiometric charges, highly diluted with external cooled EGR, in order to improve part loads efficiency by means of both the reduction in heat and pumping losses, and the optimization of compression-expansion ratio. This strategy, added to downsizing-donwspeeding, requires high-energy ignition systems to promote repeatable, stable, rapid and complete combustion.
Video
2012-06-18
Nitrous Oxide (N2O) is a greenhouse gas with a Global Warming Potential (GWP) of 298-310 [1,2] (298-310 times more potent than carbon dioxide (CO2)). As a result, any aftertreatment system that generates N2O must be well understood to be used effectively. Under low temperature conditions, N2O can be produced by Selective Catalytic Reduction (SCR) catalysts. The chemistry is reasonably well understood with N2O formed by the thermal decomposition of ammonium nitrate [3]. Ammonium nitrate and N2O form in oxides of nitrogen (NOx) gas mixtures that are high in nitrogen dioxide (NO2)[4]. This mechanism occurs at a relatively low temperature of about 200°C, and can be controlled by maintaining the nitric oxide (NO)/NO2 ratio above 1. However, N2O has also been observed at relatively high temperatures, in the region of 500°C.
Video
2012-06-18
All internal combustion piston engines emit solid nanoparticles. Some are soot particles resulting from incomplete combustion of fuels, or lube oil. Some particles are metal compounds, most probably metal oxides. A major source of metal compound particles is engine abrasion. The lube oil transports these abraded particles into the combustion zone. There they are partially vaporized and ultrafine oxide particles formed through nucleation [1]. Other sources are the metallic additives to the lube oil, metallic additives in the fuel, and debris from the catalytic coatings in the exhaust-gas emission control devices. The formation process results in extremely fine particles, typically smaller than 50 nm. Thus they intrude through the alveolar membranes directly into the human organism. The consequent health risk necessitates a careful investigation of these emissions and effective curtailment.

Related Items

Technical Paper / Journal Article
2010-04-12
Training / Education
2017-12-18