• Video
  • 15-Apr-2015 03:23 EDT

Spotlight on Design: Fuel Efficiency: Racing Toward CAFE 2025

00:21:16
Length:

Purchase Required to View Video

Short Preview Below

“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance.

Fuel efficiency, or simply put, how to get more mileage out of the same amount of fuel has become one of the main goals to be achieved by new automotive technologies in the future, thanks in part to new government regulations.

In the episode “Fuel Efficiency: Racing toward CAFE 2025” (21:24) AVL engineers show simulation and testing being used to design more fuel efficient vehicles, including the equipment that actually analyzes fuel economy. HEM Data demonstrates its data acquisition technology, and engineers at the Environmental Protection Agency’s National Vehicle and Fuel Emissions Laboratory demonstrate how fuel economy is tested by a government organization.

This episode highlights multiple areas of interest, including:

- Background and definitions of fuel efficiency

- Government regulations on fuel economy

- Simulation technologies used for fuel economy improvement

- Test equipment used to measure fuel economy

- EPA fuel economy testing

- Future trends

Also Available in DVD Format

You May Also Be Interested In: Insight: Fuel Efficiency: Fuel Economy Testing

To subscribe to a full-season of Spotlight on Design, please contact SAE Corporate Sales: 1-888-875-3976 or CustomerSales@sae.org.

Buy
Select
Price
List
Purchase to View
$75.00
Members save up to 20% off list price.
Share
HTML for Linking to Page
Page URL
Grade
Rate It
No ratings yet

View More Video

Video
2012-02-15
Zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing and boosting; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; thermal management; mechanical and lubrication systems; system level models for controls; system level models for vehicle fuel economy and emissions predictions. Presenter Fabio Bozza, Universita di Napoli
Video
2012-06-18
Impact of driving patterns on fuel economy is significant in hybrid electric vehicles (HEVs). Driving patterns affect propulsion and braking power requirement of vehicles, and they play an essential role in HEV design and control optimization. Driving pattern conscious adaptive strategy can lead to further fuel economy improvement under real-world driving. This paper proposes a real-time driving pattern recognition algorithm for supervisory control under real-world conditions. The proposed algorithm uses reference real-world driving patterns parameterized from a set of representative driving cycles. The reference cycle set consists of five synthetic representative cycles following the real-world driving distance distribution in the US Midwestern region. Then, statistical approaches are used to develop pattern recognition algorithm. Driving patterns are characterized with four parameters evaluated from the driving cycle velocity profiles.
Video
2012-03-21
Edgewater Computer Systems Inc. product RTEdge Platform 1.2 is a software toolset supporting proof based engineering, implementation and deployment of software components, built using the RTEdge AADL Microkernel modeling subset. This is a small subset of the AADL component model and execution semantics, covering threads and thread-groups communicating solely through asynchronous event ports and through explicitly shared data ports. Threads behavior is expressed as state machines and dispatch run time semantics is encoded in a Run-time Executive, enforcing pre-emptive priority dispatch based on statically assigned event priorities, with ceiling priority protocol access to shared data. This simple AADL microkernel semantic core can support all dispatch policies, communication and synchronization mechanisms of a fully fledged AADL run time environment, permitting the systematic use of the RTEdge static analysis tools for AADL compliant software components.
Video
2012-05-30
The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.

Related Items

Training / Education
2018-07-16
Technical Paper / Journal Article
2010-10-25
Article
2016-11-15
Training / Education
2017-11-14