• Video
  • 26-Mar-2017 07:52 EDT

The Future of Transportation

Find solutions to take the necessary steps to make society more moveable around cities and keep our environment clear.

Share
HTML for Linking to Page
Page URL
Grade
Rate It
3.0 Avg. Rating
2 votes

View More Video

Video
2011-12-05
The number of electronically controlled systems in commercial vehicles is increasing rapidly. Much of this electrical content is controlled using ECUs (Electronic Control Units) which share information using some type of networking technology, such as a CAN bus running the SAE J1939 protocol. Presenter Jeffrey Craig, Vector CANtech Inc.
Video
2015-04-16
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Automated driving is made possible through the data acquisition and processing of many different kinds of sensors working in unison. Sensors, cameras, radar, and lidar must work cohesively together to safely provide automated features. In the episode “Automated Vehicles: Converging Sensor Data” (8:01), engineers from IAV Automotive Engineering discuss the challenges associated with the sensor data fusion, and one of Continental North America’s technical teams demonstrate how sensors, radars, and safety systems converge to enable higher levels of automated driving.
Video
2017-01-18
It's clear the global auto industry has entered a revolutionary era that is changing how we transport ourselves and our goods. In this episode of SAE Eye on Engineering, Editor-In-Chief Lindsay Brooke looks at the need for standards to develop, test, and validate self-driving vehicles. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show. Access archived episodes of SAE Eye on Engineering.
Video
2012-03-21
The present work aims at the reduction of transmission delay at the level of AFDX ES (Avionics Full Duplex Switched Ethernet End-Systems). To this end, two approaches, namely Network Calculus and response time analysis (RTA), are employed in the computation of upper bound delay. To evaluate the delay regarding different scheduling policies, the arrival curve of the flow on output of ES is established for given traffic shaping algorithm and service mode. Computational analysis shows that Bandwidth Allocation Gap (BAG) based scheduling is the optimal policy at the level of AFDX ES, which leads to the tightest output arrival curve among all possible scheduling policies. BAG-based scheduling consists in assigning higher priority to virtual links with smaller BAG thus corresponding to the well known Rate-Monotonic Algorithm. Furthermore, schedulability criterion are established based on RTA.

Related Items

Training / Education
2011-04-09
Technical Paper / Journal Article
2010-10-25