• Video
  • 07-Jul-2017 05:21 EDT

SAE Eye on Engineering: Driver Monitoring is Coming

When cars become capable of self driving, drivers will still have to remain alert and be ready to take control. In this episode of SAE Eye on Engineering, Editor-in-Chief Lindsay Brooke looks at upcoming driver monitoring technology.

SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show.

Share
HTML for Linking to Page
Page URL
Grade
Rate It
No ratings yet

View More Video

Video
2012-01-24
Sensing exhaust gas temperature is a key component in diesel after treatment systems for both control and diagnostics. Accuracy varies significantly depending upon the sensing technology and implementation in the system. Prior published work has demonstrated that resistance based temperature sensors are not able to achieve the system accuracy required for advanced diagnostics over the life of the emission system. This presentation will show that it is feasible to achieve better than �10�C end of life system accuracy by means of active thermocouple technology. Results from tests at Michigan Technological University will be used to illustrate diagnostic uncertainty related to the application of temperature sensors and a specific DOC/DPF example will be used to show the benefits of accurate temperature based diagnostics. Presenter D. P. Culbertson, Watlow Gordon
Video
2016-08-29
Imagine a vehicle that can sense a traffic light's timing and "knows" when a red light will turn green. In this episode of SAE Eye on Engineering, Editor-In-Chief Lindsay Brooke looks at Audi's new "Traffic Light Information" system. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show. Access archived episodes of SAE Eye on Engineering.
Video
2012-02-16
This session focuses on particle emissions from combustion engines, including measurement methods and fuel effects. Presenter Leonidas D. Ntziachristos, Aristotle University Thessaloniki
Video
2012-02-01
Watlow and EmiSense Technologies, LLC are commercializing an improved electronic particulate matter (PM) sensor that has real-time measurement capability and improved sensitivity. To demonstrate the capability of this improved sensor of on board diagnostics (OBD) for failure detection of diesel particle filters (DPF), independent measurements were performed by university of California Riverside (UCR) and by Southwest Research Institute (SwRI) to characterize the engine PM emissions and to compare with the PM sensor response. In situ PM measurements from PM sensors correlate well with real-time gravimetric measurements. In addition, particle size and particle number data are presented and discussed.Due to an improved design update, the sensitivity of the sensor could have been significantly increased.

Related Items

Book
2009-03-01