Criteria

Text:
Sector:
Content:
Display:

Results

Viewing 1 to 30 of 245
2017-06-30
Video
The North American International Powertrain Conference (NAIPC) is an exclusive, invitation-only event, developed by industry leaders, for industry leaders. Visit sae.org/naipc to learn more.
2017-04-03
Video
This week, thousands of technology experts are descending upon Detroit for SAE's WCX17. In this episode of SAE Eye on Engineering, Editor-In-Chief Lindsay Brooke looks at this year's event. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show. Access archived episodes of SAE Eye on Engineering.
2017-04-03
Video
What motivates someone to hack a car? How can hacking be used for good? Find out more during Tech Hub sessions like this, at WCX.
2017-03-26
Video
The era of humans writing software is coming to an end. Learn how the auto industry is adapting to new data driven analytics and solutions.
2017-03-26
Video
Find solutions to take the necessary steps to make society more moveable around cities and keep our environment clear.
2017-03-03
Video
Industry leaders gather to exchange ideas, unveil new inventions and discuss best practices and solutions at The Exchange. Showcase your brand, your products and your concepts, here, in front of a highly influential audience of buyers and decision makers.
2017-03-03
Video
Exclusively for OEMs and Top Tier Suppliers, this forum is the premier venue for showcasing your latest solutions through technical presentations, new product launches and Q & A opportunities with attendees.
2017-03-03
Video
This entirely reimagined event, designed to facilitate connections between engineers and suppliers, offers new platforms for presentations, technical discussions, and networking. Promote your products, connect with buyers and maximize new opportunities, at WCX.
2017-02-23
Video
As the automotive industry advances, so does its premier technical event. WCX, the evolution of the SAE World Congress, offers a host of new activities, events, educational sessions and interactive experiences. Visit wcx17.org to learn more.
2017-02-03
Video
Industry leaders, inventors and disruptors are on hand at WCX to share their forward vision and debut their latest innovations. Preview what’s new, ask questions, gather information and deepen your understanding of the new developments that will impact your business, your customers and your next step. Visit wcx17.org to learn more.
2017-02-03
Video
WCX offers numerous opportunities to expand your network and grow your career. Exchange ideas with your peers and explore new opportunities with the most exciting companies in the mobility industry. Visit wcx17.org to learn more.
2017-01-21
Video
At WCX, pioneers and thought leaders from a spectrum of industries convey technology, ideas, and concepts that goes beyond traditional mobility. Broaden your scope of knowledge by hearing ground-breaking insight about the future of mobility at this premier technical event. Visit wcx17.org to learn more.
2017-01-21
Video
As the automotive industry advances, so does its premier technical event. WCX is an interactive experience, uniting the industry’s best talent for three days of active learning, high-powered collaboration, and technological discovery—all against the backdrop of mobility’s exciting future. Visit wcx17.org to learn more.
2016-08-27
Video
SAE World Congress is now WCX17: SAE World Congress Experience. WCX17 is a full-sensory event experience that immerses you in the forefront of the automotive and mobility industries. Spend three days discovering new ideas on the exhibit floor, in intimate venues, and in networking events. Attendees can now receive technical knowledge and content in unique and engaging settings. Experience the Evolution - wcx17.org.
2013-08-19
Video
Career development is no longer something you focus on in your twenties and are set for life, it is ongoing and constant. New technologies, globalization and the world-wide competition for jobs demand that we continue to grow our skills and knowledge throughout our life. This session will provide you with tools to help you meet this demand as an engineering professional. Participants will create a personal mission statement and set career goals, identify the best way to research new opportunities and build their network while also crafting a personal brand with consistent messaging. Organizer Martha Schanno, SAE International Panelist Caryn Mateer, Transformational Leaders Intl. Kathleen Riley, Transformational Leaders Intl.
2013-04-16
Video
International revealed its Project Horizon concept at the 2013 Mid-America Trucking Show, showcasing technology related to aerodynamics, lighting, and chassis that could be on the road within 24 to 36 months. Active grille shutters and unique application of LED light pipes are among those technologies.
2012-09-18
Video
ISO 26262 is the first comprehensive automotive safety standard that addresses the safety of the growing number of electric/electronic and software intensive features in today's road vehicles. This paper assesses the standard's ability to provide safety assurance. The strengths of the standard are: (1) emphasizing safety management and safety culture; (2) prescribing a system engineering development process; (3) setting up a framework for hazard elimination early in the design process; (4) disassociating system safety risk assessment from component probabilistic failure rate. The third and fourth strengths are noteworthy departure from the philosophy of IEC61508. This standard has taken much-needed and very positive steps towards ensuring the functional safety of the modern road vehicles. SAE publications from industry show a lot of enthusiasm towards this standard.
2012-06-18
Video
All internal combustion piston engines emit solid nanoparticles. Some are soot particles resulting from incomplete combustion of fuels, or lube oil. Some particles are metal compounds, most probably metal oxides. A major source of metal compound particles is engine abrasion. The lube oil transports these abraded particles into the combustion zone. There they are partially vaporized and ultrafine oxide particles formed through nucleation [1]. Other sources are the metallic additives to the lube oil, metallic additives in the fuel, and debris from the catalytic coatings in the exhaust-gas emission control devices. The formation process results in extremely fine particles, typically smaller than 50 nm. Thus they intrude through the alveolar membranes directly into the human organism. The consequent health risk necessitates a careful investigation of these emissions and effective curtailment.
2012-06-18
Video
The fatty acid methyl esters (FAME's) - in Europe mostly RME (Rapeseed methyl ester) - are used in several countries as alternative biogene Diesel fuels in various blending ratios with fossil fuels (Bxx). Questions often arise about the influences of these biocomponents on the modern exhaust aftertreatment systems and especially on the regeneration of Diesel particle filters (DPF). In the present work different regeneration procedures of DPF systems were investigated with biofuels B0, B20 & B100. The tested regeneration procedures were: passive regenerations: DOC + CSF; CSF alone, active regenerations: standstill burner; fuel injections & DOC. During each regeneration on-line measurements of regulated and unregulated emission components (nanoparticles & FTIR) were conducted. It can be stated that the increased portion of RME in fuel provokes longer time periods to charge the filter with soot.
2012-06-18
Video
Manganese oxides show high catalytic activity for CO and HC oxidation without including platinum group metals (PGM). However, there are issues with both thermal stability and resistance to sulfur poisoning. We have studied perovskite-type YMnO3 (YMO) with the aim of simultaneously achieving both activity and durability. This paper describes the oxidation activity of PGM-free Ag/i-YMO, which is silver supported on improved-YMO (i-YMO). The Ag/i-YMO was obtained by the following two methods. First, Mn4+ ratio and specific surface area of YMO were increased by optimizing composition and preparation method. Second, the optimum amount of silver was supported on i-YMO. In model gas tests and engine bench tests, the Ag/i-YMO catalyst showed the same level of activity as that of the conventional Pt/?-Al2O3 (Pt = 3.0 g/L). In addition, there was no degradation with respect to either heat treatment (700°C, 90 h, air) or sulfur treatment (600°C to 200°C, total 60 h, 30 ppm SO2).
2012-06-18
Video
Currently, two consolidated aftertreatment technologies are available for the reduction of NOx emissions from diesel engines: Urea SCR (Selective Catalytic Reduction) systems and LNT (Lean NOx Trap) systems. Urea SCR technology, which has been widely used for many years at stationary sources, is becoming nowadays an attractive alternative also for light-duty diesel applications. However, SCR systems are much more effective in NOx reduction efficiency at high load operating conditions than light load condition, characterized by lower exhaust gas temperatures.
2012-06-18
Video
This paper reports results of an experimental investigation performed on a commercial diesel engine supplied with fuel blends having low cetane number to attain a simultaneous reduction in NOx and smoke emissions. Blends of 20% and 40% of n-butanol in conventional diesel fuel have been tested, comparing engine performance and emissions to diesel ones. Taking advantage of the fuel blend higher resistance to auto ignition, it was possible to extend the range in which a premixed combustion is achieved. This allowed to match the goal of a significant reduction in emissions without important penalties in fuel consumption. The experimental activity was carried on a turbocharged, water cooled, 4 cylinder common rail DI diesel engine. The engine equipment included an exhaust gas recirculation system controlled by an external driver, a piezo-quartz pressure transducer to detect the in-cylinder pressure signal and a current probe to acquire the energizing current to the injector.
2012-06-18
Video
A conceptual project aimed at understanding the fundamental design considerations concerning the implementation of catalyst systems on outboard marine engines was carried out by Mercury Marine, with the support of the California Air Resources Board. In order to keep a reasonable project scope, only electronic fuel injected four-stroke outboards were considered. While they represent a significant portion of the total number of outboard engines sold in the United States, carbureted four-strokes and direct injected two-strokes pose their own sets of design constraints and were considered to be outside the scope of this study. Recently, three-way catalyst based exhaust emissions aftertreatment systems have been introduced into series production on sterndrive and inboard marine spark ignition engines in North America. The integration of catalyst systems on outboards is much more challenging than on these other marine propulsion alternatives.
2012-06-18
Video
Nitrous Oxide (N2O) is a greenhouse gas with a Global Warming Potential (GWP) of 298-310 [1,2] (298-310 times more potent than carbon dioxide (CO2)). As a result, any aftertreatment system that generates N2O must be well understood to be used effectively. Under low temperature conditions, N2O can be produced by Selective Catalytic Reduction (SCR) catalysts. The chemistry is reasonably well understood with N2O formed by the thermal decomposition of ammonium nitrate [3]. Ammonium nitrate and N2O form in oxides of nitrogen (NOx) gas mixtures that are high in nitrogen dioxide (NO2)[4]. This mechanism occurs at a relatively low temperature of about 200°C, and can be controlled by maintaining the nitric oxide (NO)/NO2 ratio above 1. However, N2O has also been observed at relatively high temperatures, in the region of 500°C.
2012-06-18
Video
Biofuel usage is increasingly expanding thanks to its significant contribution to a well-to-wheel (WTW) reduction of greenhouse gas (GHG) emissions. In addition, stringent emission standards make mandatory the use of Diesel Particulate Filter (DPF) for the particulate emissions control. The different physical properties and chemical composition of biofuels impact the overall engine behaviour. In particular, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value (LHV). More specifically, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value, respectively. The particle emissions, in fact, are lower mainly because of the higher oxygen content. Subsequently less frequent regenerations are required.
2012-06-18
Video
Impact of driving patterns on fuel economy is significant in hybrid electric vehicles (HEVs). Driving patterns affect propulsion and braking power requirement of vehicles, and they play an essential role in HEV design and control optimization. Driving pattern conscious adaptive strategy can lead to further fuel economy improvement under real-world driving. This paper proposes a real-time driving pattern recognition algorithm for supervisory control under real-world conditions. The proposed algorithm uses reference real-world driving patterns parameterized from a set of representative driving cycles. The reference cycle set consists of five synthetic representative cycles following the real-world driving distance distribution in the US Midwestern region. Then, statistical approaches are used to develop pattern recognition algorithm. Driving patterns are characterized with four parameters evaluated from the driving cycle velocity profiles.
2012-06-18
Video
Selective Catalytic Reduction (SCR) catalysts are used to reduce NOx emissions from internal combustion engines in a variety of applications [1,2,3,4]. Southwest Research Institute (SwRI) performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and a Fe-zeolite formulation. This work describes NH3 storage capacity measurement data as a function of aging time and temperature. Addressing one objective of the work, these data can be used in model-based control algorithms to calculate the current NH3 storage capacity of an SCR catalyst operating in the field, based on time and temperature history. The model-based control then uses the calculated value for effective DEF control and prevention of excessive NH3 slip. Addressing a second objective of the work, accelerated thermal aging of SCR catalysts may be achieved by elevating temperatures above normal operating temperatures.
2012-06-18
Video
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO2 oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
2012-06-18
Video
The combination of advanced combustion with advanced selective catalytic reduction (SCR) catalyst formulations was studied in the work presented here to determine the impact of the unique hydrocarbon (HC) emissions from premixed charge compression ignition (PCCI) combustion on SCR performance. Catalyst core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. The zeolites which form the basis of these catalysts are different with the Cu-based catalyst made on a chabazite zeolite which las smaller pore structures relative to the Fe-based catalyst. Subsequent to exposure, bench flow reactor characterization of performance and hydrocarbon release and oxidation enabled evaluation of overall impacts from the engine exhaust.
2012-06-18
Video
High-load HCCI combustion has recently been demonstrated with conventional gasoline using intake pressure boosting. The key is to control the high combustion heat release rates (HRR) by using combustion timing retard and mixture stratification. However, at naturally aspirated and moderately boosted conditions, these techniques did not work well due to the low autoignition reactivity of conventional gasoline at these conditions. This work studies a low-octane distillate fuel with similar volatility to gasoline, termed Hydrobate, for its potential in HCCI engine combustion at naturally aspirated and low-range boosted conditions. The HCCI combustion with fully premixed and partially stratified charges was examined at intake pressures (Pin) from 100 to 180 kPa and constant intake temperature (60�C) and engine speed (1200 rpm).
Viewing 1 to 30 of 245

Filter

  • Video
    245
  • Range:
    to:
  • Year: